Type + realization link | h-Characteristic | Realization of h | sl(2)-module decomposition of the ambient Lie algebra \(\psi=\) the fundamental \(sl(2)\)-weight. | Centralizer dimension | Type of semisimple part of centralizer, if known | The square of the length of the weight dual to h. | Dynkin index | Minimal containing regular semisimple SAs | Containing regular semisimple SAs in which the sl(2) has no centralizer |
\(A^{120}_1\) | (2, 2, 2, 2, 2, 2, 2, 2) | (8, 14, 18, 20, 20, 18, 14, 8) | \(V_{16\psi}+V_{14\psi}+V_{12\psi}+V_{10\psi}+V_{8\psi}+V_{6\psi}+V_{4\psi}+V_{2\psi}\)
| 0 | \(\displaystyle 0\) | 240 | 120 | A^{1}_8; | A^{1}_8; |
\(A^{84}_1\) | (2, 2, 2, 1, 1, 2, 2, 2) | (7, 12, 15, 16, 16, 15, 12, 7) | \(V_{14\psi}+V_{12\psi}+V_{10\psi}+V_{8\psi}+2V_{7\psi}+V_{6\psi}+V_{4\psi}+V_{2\psi}+V_{0}\)
| 1 | \(\displaystyle 0\) | 168 | 84 | A^{1}_7; | A^{1}_7; |
\(A^{57}_1\) | (2, 2, 1, 1, 1, 1, 2, 2) | (6, 10, 12, 13, 13, 12, 10, 6) | \(V_{12\psi}+V_{10\psi}+V_{8\psi}+2V_{7\psi}+V_{6\psi}+2V_{5\psi}+V_{4\psi}+2V_{2\psi}+V_{0}\)
| 1 | \(\displaystyle 0\) | 114 | 57 | A^{1}_6+A^{1}_1; | A^{1}_6+A^{1}_1; |
\(A^{56}_1\) | (2, 2, 2, 0, 0, 2, 2, 2) | (6, 10, 12, 12, 12, 12, 10, 6) | \(V_{12\psi}+V_{10\psi}+V_{8\psi}+5V_{6\psi}+V_{4\psi}+V_{2\psi}+4V_{0}\)
| 4 | \(\displaystyle A^{1}_1\) | 112 | 56 | A^{1}_6; | A^{1}_6; |
\(A^{39}_1\) | (2, 1, 1, 1, 1, 1, 1, 2) | (5, 8, 10, 11, 11, 10, 8, 5) | \(V_{10\psi}+V_{8\psi}+2V_{7\psi}+V_{6\psi}+2V_{5\psi}+2V_{4\psi}+2V_{3\psi}+2V_{2\psi}+V_{0}\)
| 1 | \(\displaystyle 0\) | 78 | 39 | A^{1}_5+A^{1}_2; | A^{1}_5+A^{1}_2; |
\(A^{36}_1\) | (2, 2, 0, 1, 1, 0, 2, 2) | (5, 8, 9, 10, 10, 9, 8, 5) | \(V_{10\psi}+V_{8\psi}+3V_{6\psi}+2V_{5\psi}+3V_{4\psi}+2V_{2\psi}+2V_{\psi}+2V_{0}\)
| 2 | \(\displaystyle 0\) | 72 | 36 | A^{1}_5+A^{1}_1; | A^{1}_5+A^{1}_1; |
\(A^{35}_1\) | (2, 2, 1, 0, 0, 1, 2, 2) | (5, 8, 9, 9, 9, 9, 8, 5) | \(V_{10\psi}+V_{8\psi}+V_{6\psi}+6V_{5\psi}+V_{4\psi}+V_{2\psi}+9V_{0}\)
| 9 | \(\displaystyle A^{1}_2\) | 70 | 35 | A^{1}_5; | A^{1}_5; |
\(A^{30}_1\) | (1, 1, 1, 1, 1, 1, 1, 1) | (4, 7, 9, 10, 10, 9, 7, 4) | \(V_{8\psi}+2V_{7\psi}+2V_{6\psi}+2V_{5\psi}+2V_{4\psi}+2V_{3\psi}+2V_{2\psi}+2V_{\psi}+V_{0}\)
| 1 | \(\displaystyle 0\) | 60 | 30 | A^{1}_4+A^{1}_3; | A^{1}_4+A^{1}_3; |
\(A^{24}_1\) | (2, 0, 2, 0, 0, 2, 0, 2) | (4, 6, 8, 8, 8, 8, 6, 4) | \(V_{8\psi}+3V_{6\psi}+6V_{4\psi}+6V_{2\psi}+2V_{0}\)
| 2 | \(\displaystyle 0\) | 48 | 24 | A^{1}_4+A^{1}_2; | A^{1}_4+A^{1}_2; |
\(A^{22}_1\) | (2, 1, 0, 1, 1, 0, 1, 2) | (4, 6, 7, 8, 8, 7, 6, 4) | \(V_{8\psi}+V_{6\psi}+4V_{5\psi}+V_{4\psi}+4V_{3\psi}+5V_{2\psi}+4V_{0}\)
| 4 | not computed | 44 | 22 | A^{1}_4+2A^{1}_1; | A^{1}_4+2A^{1}_1; |
\(A^{21}_1\) | (2, 1, 1, 0, 0, 1, 1, 2) | (4, 6, 7, 7, 7, 7, 6, 4) | \(V_{8\psi}+V_{6\psi}+2V_{5\psi}+5V_{4\psi}+2V_{3\psi}+2V_{2\psi}+4V_{\psi}+5V_{0}\)
| 5 | \(\displaystyle A^{1}_1\) | 42 | 21 | A^{1}_4+A^{1}_1; | A^{1}_4+A^{1}_1; |
\(A^{20}_1\) | (2, 2, 0, 0, 0, 0, 2, 2) | (4, 6, 6, 6, 6, 6, 6, 4) | \(V_{8\psi}+V_{6\psi}+9V_{4\psi}+V_{2\psi}+16V_{0}\)
| 16 | \(\displaystyle A^{1}_3\) | 40 | 20 | A^{1}_4; | A^{1}_4; |
\(A^{20}_1\) | (0, 2, 0, 1, 1, 0, 2, 0) | (3, 6, 7, 8, 8, 7, 6, 3) | \(4V_{6\psi}+4V_{4\psi}+4V_{3\psi}+4V_{2\psi}+4V_{0}\)
| 4 | not computed | 40 | 20 | 2A^{1}_3; | 2A^{1}_3; |
\(A^{15}_1\) | (1, 1, 0, 1, 1, 0, 1, 1) | (3, 5, 6, 7, 7, 6, 5, 3) | \(V_{6\psi}+2V_{5\psi}+4V_{4\psi}+4V_{3\psi}+5V_{2\psi}+4V_{\psi}+2V_{0}\)
| 2 | \(\displaystyle 0\) | 30 | 15 | A^{1}_3+A^{1}_2+A^{1}_1; | A^{1}_3+A^{1}_2+A^{1}_1; |
\(A^{14}_1\) | (1, 1, 1, 0, 0, 1, 1, 1) | (3, 5, 6, 6, 6, 6, 5, 3) | \(V_{6\psi}+2V_{5\psi}+2V_{4\psi}+6V_{3\psi}+6V_{2\psi}+2V_{\psi}+5V_{0}\)
| 5 | \(\displaystyle A^{1}_1\) | 28 | 14 | A^{1}_3+A^{1}_2; | A^{1}_3+A^{1}_2; |
\(A^{12}_1\) | (2, 0, 0, 1, 1, 0, 0, 2) | (3, 4, 5, 6, 6, 5, 4, 3) | \(V_{6\psi}+5V_{4\psi}+2V_{3\psi}+9V_{2\psi}+4V_{\psi}+5V_{0}\)
| 5 | not computed | 24 | 12 | A^{1}_3+2A^{1}_1; | A^{1}_3+2A^{1}_1; |
\(A^{12}_1\) | (0, 0, 2, 0, 0, 2, 0, 0) | (2, 4, 6, 6, 6, 6, 4, 2) | \(9V_{4\psi}+9V_{2\psi}+8V_{0}\)
| 8 | not computed | 24 | 12 | 3A^{1}_2; | 3A^{1}_2; |
\(A^{11}_1\) | (2, 0, 1, 0, 0, 1, 0, 2) | (3, 4, 5, 5, 5, 5, 4, 3) | \(V_{6\psi}+3V_{4\psi}+6V_{3\psi}+4V_{2\psi}+6V_{\psi}+10V_{0}\)
| 10 | \(\displaystyle A^{1}_2\) | 22 | 11 | A^{1}_3+A^{1}_1; | A^{1}_3+A^{1}_1; |
\(A^{10}_1\) | (2, 1, 0, 0, 0, 0, 1, 2) | (3, 4, 4, 4, 4, 4, 4, 3) | \(V_{6\psi}+V_{4\psi}+10V_{3\psi}+V_{2\psi}+25V_{0}\)
| 25 | \(\displaystyle A^{1}_4\) | 20 | 10 | A^{1}_3; | A^{1}_3; |
\(A^{9}_1\) | (0, 1, 1, 0, 0, 1, 1, 0) | (2, 4, 5, 5, 5, 5, 4, 2) | \(4V_{4\psi}+4V_{3\psi}+9V_{2\psi}+6V_{\psi}+5V_{0}\)
| 5 | not computed | 18 | 9 | 2A^{1}_2+A^{1}_1; | 2A^{1}_2+A^{1}_1; |
\(A^{8}_1\) | (0, 2, 0, 0, 0, 0, 2, 0) | (2, 4, 4, 4, 4, 4, 4, 2) | \(4V_{4\psi}+16V_{2\psi}+12V_{0}\)
| 12 | not computed | 16 | 8 | 2A^{1}_2; | 2A^{1}_2; |
\(A^{7}_1\) | (1, 0, 0, 1, 1, 0, 0, 1) | (2, 3, 4, 5, 5, 4, 3, 2) | \(V_{4\psi}+6V_{3\psi}+10V_{2\psi}+6V_{\psi}+9V_{0}\)
| 9 | not computed | 14 | 7 | A^{1}_2+3A^{1}_1; | A^{1}_2+3A^{1}_1; |
\(A^{6}_1\) | (1, 0, 1, 0, 0, 1, 0, 1) | (2, 3, 4, 4, 4, 4, 3, 2) | \(V_{4\psi}+4V_{3\psi}+9V_{2\psi}+12V_{\psi}+8V_{0}\)
| 8 | not computed | 12 | 6 | A^{1}_2+2A^{1}_1; | A^{1}_2+2A^{1}_1; |
\(A^{5}_1\) | (1, 1, 0, 0, 0, 0, 1, 1) | (2, 3, 3, 3, 3, 3, 3, 2) | \(V_{4\psi}+2V_{3\psi}+10V_{2\psi}+10V_{\psi}+17V_{0}\)
| 17 | \(\displaystyle A^{1}_3\) | 10 | 5 | A^{1}_2+A^{1}_1; | A^{1}_2+A^{1}_1; |
\(A^{4}_1\) | (2, 0, 0, 0, 0, 0, 0, 2) | (2, 2, 2, 2, 2, 2, 2, 2) | \(V_{4\psi}+13V_{2\psi}+36V_{0}\)
| 36 | \(\displaystyle A^{1}_5\) | 8 | 4 | A^{1}_2; | A^{1}_2; |
\(A^{4}_1\) | (0, 0, 0, 1, 1, 0, 0, 0) | (1, 2, 3, 4, 4, 3, 2, 1) | \(16V_{2\psi}+8V_{\psi}+16V_{0}\)
| 16 | not computed | 8 | 4 | 4A^{1}_1; | 4A^{1}_1; |
\(A^{3}_1\) | (0, 0, 1, 0, 0, 1, 0, 0) | (1, 2, 3, 3, 3, 3, 2, 1) | \(9V_{2\psi}+18V_{\psi}+17V_{0}\)
| 17 | not computed | 6 | 3 | 3A^{1}_1; | 3A^{1}_1; |
\(A^{2}_1\) | (0, 1, 0, 0, 0, 0, 1, 0) | (1, 2, 2, 2, 2, 2, 2, 1) | \(4V_{2\psi}+20V_{\psi}+28V_{0}\)
| 28 | not computed | 4 | 2 | 2A^{1}_1; | 2A^{1}_1; |
\(A^{1}_1\) | (1, 0, 0, 0, 0, 0, 0, 1) | (1, 1, 1, 1, 1, 1, 1, 1) | \(V_{2\psi}+14V_{\psi}+49V_{0}\)
| 49 | \(\displaystyle A^{1}_6\) | 2 | 1 | A^{1}_1; | A^{1}_1; |